
Graphics Programming Techniques

Dynamic GPU Particle System 
utilising Quaternion Mathematics 

Joseph Mumford

Level 7 MComp | Sheffield Hallam University 2024



Overview

1

● This project entailed the creation of a 
dynamic particle system in DirectX 12, 
utilising the GPU to process and render high 
numbers of particles efficiently.

● “Dynamic” in this context refers to runtime 
creation, deletion, and variation of particles 
within this system; allowing various visual 
effects to be achieved.
This video displays what the system is 
currently capable of; computing and 
rendering ~65,000 particles.



Particle System

2

● The implemented particle system involves 
encapsulating particle functionality between three 
main classes.
These are Particles, Particle Emitters, and the 
Particle Manager.

● Particle Manager
- A class that contains a pool of particle data as well as 
particle emitters.

● Particle Emitter
- A class that activates, deactivates, and assigns properties 
to particle data.

● Particle(Data)
- A struct containing data for GPU computation. Such as a 
particle’s position and colour.



Particle System

3

● The system also includes some simple structs for 
particle allocation and behaviour.

● ParticleProperties & ParticlePropertiesData
- Structs containing particle behaviour.
- ParticlePropertiesData only contains data sent to the 
compute shader via a constant buffer.
- ParticleProperties includes extra information not used for 
particle behaviour, such as billboarding.
- This alleviates the ParticleData struct of unchanging 
variables that aren’t updated within the compute shader.

● ParticleAllocationBlockData
- A struct detailing a range of particles an emitter has 
exclusive access to. Utilised by the Particle Manager.



Shader Buffers

4

● In this system, both the graphics and compute shaders use input and constant buffers, 
but the latter also utilises output and readback buffers for retrieving processed data back into the 
particle manager.

● The compute shader utilises its constant buffer to receive ParticleProperties from Particle Emitters, 
which differs per emitter.

● When dispatching to the compute shader, buffer data differs per emitter. 
Therefore, a dispatch call is made for each emitter, each with different input and constant buffer 
data.

Graphics Shader Buffers (Vertex, Geometry, Pixel) Compute Shader Buffers



Particle Computation via a Compute Shader

5

● As part of the particle system, the compute shader is responsible for updating all particles 
dispatched to it, using the dispatched information. 
This includes updating positions, rotations, colour, opacity, travel direction, and velocity. 
Tasks that are infeasible on the CPU in high quantity.

● This enables the compute shader to achieve effects such as particles fading in and out, 
as well as changing colour or size over time; all done through use of the constant buffer 
and particle data. This varies the visual effects between particles and emitters.



Vertex Data Construction + Instancing

6

● Once all active particles have been computed, their data is passed to the Graphics Shaders 
via a “ParticleVertex” struct. 
Therefore, particle data for all particles must first be moved from the Particle Manager 
into these structs. 
This includes colour, position, rotation, size, and whether the particle is billboarded; 
varying the particles, alongside the mathematics in the geometry shader.

● This is currently done on the CPU and, as a result, bottlenecks the system.
Performing this on the GPU in future iterations would be more efficient, and solve this 
bottleneck.

● Once the particle vertices have been constructed, DrawInstance() is used to draw 
instances of particles with one draw call, rather than multiple. 



Quaternions in the Geometry Shader

7.1

● Understanding of quaternions sourced from Frank Luna, among others.
Introduction to 3D Game Programming with DirectX 12: Chapter 22 (2016)

● Quaternions are ordered 4-tuples, or a vector of 4 floating point numbers. They operate under 
the same principles of complex numbers, possessing “real” and “imaginary” components. For 
quaternions, the X, Y, and Z components are the latter, whereas their W component is the 
former.

● Complex numbers easily represent points and vectors due to how their real components multiply, 
add and subtract*. Quaternions expand this into 3D by possessing three imaginary components.

● Quaternions for spatial rotations can be constructed from a rotation direction and a magnitude 
(also referred to as the axis and angle respectively). For particles, we can pass in Euler angles 
and convert them into a quaternion for use in rotational transformations.

*



[Code Flow | Non-Billboarded] Quaternions in the Geometry Shader

7.2
The content of this function will be revealed in 

the coming slides. It does as described.



[Code Flow | Billboarded] Quaternions in the Geometry Shader

7.3

Rotation of the vertex position in 2-dimension 
space around a central point. This central point is 

around an abstract 2D world origin of 0,0 (x,y).



Quaternion Mathematics

8

● These are the quaternion functions used both in the geometry and compute shader.
● “Both”, because these function(s) can also be utilised for rotating a directional vector.



Quaternions in the Compute Shader

9

● Quaternion rotations allow for a rotational velocity to be applied to a particle’s travel 
direction, allowing for curved moment of a particle.

● In the compute shader, this function is called to process the aforementioned velocity for all 
particles. Creating visuals such as a red spiral, using the same functionality for rotating 
particle quads: 



Potential Improvements & Alternative Approaches

10

Key Optimisations:
➢ Decreasing the size of the ParticleData struct to increase speed.

○ DirectX and HLSL possess a 32-bit data type named “Half”, which can represent floating point numbers.
○ Testing reveals this reduced the size of ParticleData from 72 bytes to 48 bytes.

- This means ParticleData wouldn’t cross 64-byte cache lines anymore.
○ Size can be reduced even further with smaller data types, such as a “Nibble” (0.5 bytes).

➢ Constructing the Vertex Data on the GPU.
○ This is a critical bottleneck on the CPU, constructing these on the GPU is a better alternative.

➢ There is potential in processing tasks (where relevant) on the Geometry Shader as an alternative to the 
Compute Shader.

Future Functionality/Features:
➢ Texture Diversity - Supporting different textures for each type of particle, 

such leaves and flames.
➢ Blending Improvements - Allows for more convincing and flexible transparency, enabling more visual effects.
➢ Particles Shadows - Essential for realistic particle effects.



End of Presentation

Thank You


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

